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What is interesting about helium physics ?

Quantum Theory of Corresponding States:

[How “quantum” is a (quantum) liquid ? } \‘ MolscuesiAtoms  —
) Hard spheres —

€ Coulomb —

o\ 12 o\ 6 2
Let Vi (r)=4 <7> - (f) = —
JL( ) € [ r r ‘ | //,
X =— Vy(r)=ev(x) L
(o

r (some units)
1 N? )
Then =H(Xy...,Xn) = _Zzi:vx‘ +§v(|xi —xj|)

1\ 2
Quantum Parameter: A= < 2)
Meo

A ~ 3 for He, A =~ 1 — 2 for Hy, HD, D5, A < 0.1 for rare gases.
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Observables: What neutron scatterers measure

Understanding the dynamics of the helium liquids

@ Double differential cross section: What experimentalists measure

serors = (16 ) Stkun)
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Observables: What neutron scatterers measure

Understanding the dynamics of the helium liquids

@ Double differential cross section: What experimentalists measure

o2 oh ~ ° (k,)s(k’m’)

@ Dynamic structure function: The definitions

Sk Z\ (Wnlo| Vo) |* 8 — en)

H|W0>:E0|Wo> H‘\Un :[Eo+€n]|wn>
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Observables: What neutron scatterers measure

Understanding the dynamics of the helium liquids

@ Double differential cross section: What experimentalists measure

o2 oh ~ ° (k,)s(k’m’)

@ Dynamic structure function: The definitions

Sk Z\ (Wnlo| Vo) |* 8 — en)

H|W0>:E0|Wo> H‘\Un :[Eo+€n]|wn>
@ Density-density response function: What theorists calculate

S(k, hw) = _1 m (K, Fiw)

Spa(r,t) /d3r dt’ x(r,r';t — t')0Vex (r', t')
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Early experiments
R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).

Spectrum by Cowley and

Woods 1971

EXCITATION ENERGY (°K)
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Fio. 7. The experimental resuls for the energies o the one-phonon excitations at 1.1 °K.
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Spectrum by Cowley and The characteristic features:

Woods 1971 @ Phonon branch
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Early experiments
R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).

Spectrum by Cowley and The characteristic features:

Woods 1971 @ Phonon branch

COWLEY AND WOODS: INELASTIC. s

@ The famous “roton minimum?”,
Energy A and wave number ka

EXCITATION ENERGY (°K)
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Early experiments
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Early experiments
R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).

Spectrum by Cowley and The characteristic features:

Woods 1971 Phonon branch
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~ 2/, wave number up to 2ka
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Early experiments
R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).

Spectrum by Cowley and The characteristic features:

Woods 1971 @ Phonon branch

@ The famous “roton minimum?”,
Energy A and wave number ka
@ The “maxon”

@ The “Pitaevskii Plateau”, Energy
~ 2/, wave number up to 2ka

EXCITATION ENERGY (°K)

Questions:
@ What are the physical mechanisms behind these features ?
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Early experiments
R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).

Spectrum by Cowley and The characteristic features:

Woods 1971 @ Phonon branch

@ The famous “roton minimum?”,
Energy A and wave number ka
@ The “maxon”

@ The “Pitaevskii Plateau”, Energy
~ 2/, wave number up to 2ka

EXCITATION ENERGY (°K)

Questions:
@ What are the physical mechanisms behind these features ?
@ Is there anything else to be seen ?
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The tools
.. of the theorist and

The theorist’s tools:

0

HO[O) = b [0(0))
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The tools
.. of the theorist and

The theorist’s tools:

t)|o(t)) = m— ‘
IR
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The tools
.. of the theorist and the experimentalist

The theorist’s tools:
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The tools
.. of the theorist and the experimentalist

The theorist’s tools:

Getting the same
answer ?

3

Energy transfer w (meV)
SQuw) (AU,

o v s o

°80 05 10 15 20 25 30 a5
Wavevector transfer Q (A™')
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The tools
.. of the theorist and the experimentalist

The theorist’s tools:

Getting the same
answer ?

3

Energy transfer w (meV)
SQuw) (AU,

o v s o

°80 05 10 15 20 25 30 a5
Wavevector transfer Q (A™')

Is there anything else
to be seen ?
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Microscopic Many-Body Theory

Hamiltonian, wave functions, observables

Postulate. . .

© An empirical, non-relativistic microscopic Hamiltonian

H= vaz-i-zvext +ZV

i<j
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Microscopic Many-Body Theory

Hamiltonian, wave functions, observables

Postulate. . .

© An empirical, non-relativistic microscopic Hamiltonian

=3 g+ 2 Ve + TV
i<
@ Particle number, mass
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Microscopic Many-Body Theory

Hamiltonian, wave functions, observables

Postulate. . .

© An empirical, non-relativistic microscopic Hamiltonian
R _, . -
H = —Ei: %Vi + Ei:vext(l) + ;V(UJ)
@ Particle number, mass
© Interactions
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Microscopic Many-Body Theory

Hamiltonian, wave functions, observables

Postulate. . .

© An empirical, non-relativistic microscopic Hamiltonian

H— Zivz‘i_ZVext +ZV
i<j
@ Particle number, mass Q Statistics (Fermi, Bose)

© Interactions
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Microscopic Many-Body Theory

Hamiltonian, wave functions, observables
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Microscopic Many-Body Theory

Hamiltonian, wave functions, observables

Postulate. . .

© An empirical, non-relativistic microscopic Hamiltonian

2
H = —Zzhmviz +Zvext(i) —|—ZV(i,j)

i<j
© Particle number, mass © Statistics (Fermi, Bose)
© Interactions © Temperature

Turn on your computer and..

Calculate from no other information. ..
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Postulate. . .
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Microscopic Many-Body Theory

Hamiltonian, wave functions, observables

Postulate. . .

© An empirical, non-relativistic microscopic Hamiltonian

2
H = —Zzhmviz A Zvext(i) —|—ZV(i,j)

i<j
© Particle number, mass © Statistics (Fermi, Bose)
© Interactions © Temperature

Turn on your computer and..

Calculate from no other information. ..

© Energetics © Thermodynamics
@ Structure @ Finite-size properties
© Excitations © Phase transitions (?). ..
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Correlated wave functions: Bragbook

A “simple quick and dirty” method:

Wo(1,...,N) = exp= [Zul )+Zu2(ri,rj)+...]d)o(l,...,N)

i<j
= F(1,...,N)®o(1,...,N)
®o(1,...,N) “Model wave function” (Slater determinant)
Equation of state for “He and 3He:
1.0 T L
-6.0 FHNC-EL/C - VMC-J© +
05F FHNC-EL/5 VMGIT  x
-6.2 FHNC-EL/5 +T e VMC-JTB *
0.0} FHNC-EL/5+T+CBF - ,~'DMC-RN @ ]
-6.4 FHNC-EL/5 +T +CBF 6 —— -~ *
< 66 g 05 L - 5
2 g T b
70k -15F
-7.2 20} g
74 . . . . . 25 )
0.016 0.018 0.020 0.022 0.024 0.026 0.028 0.010 0.012 0.014 0.016 0.018 0.020
T S
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Correlated wave functions: Bragbook

A “simple quick and dirty” method:

Wo(1,...,N) = exp= [Zul )+Zu2(ri,rj)+...]d)o(l,...,N)

i<j
= F(l,...,N)CDO(l,...,N)
®o(1,...,N) “Model wave function” (Slater determinant)
Structure functions of *He and 3He
1.6 . . . . . . . 1.4
1471 S 1 1.2} oy
L2y 7N ] 1.0} I
101 ]
- _os8}
< o8¢ =<
? o6} FHNC-EL— DMC -
i PIMC . . Achter and Meyer +
041 ANSED ] o4r 3 Hallock, T = 0.36 Kx
0.2 Svensson et al. . B 0.2} Hallock, T = 0.41 Kx
Robkoff and Hallock
0.0 s s s s s s s 0.0 N N N L
00 05 10 15 20 25 30 35 40 0 1 2 3 4 5
k (A k (A

Generalities - Setting the scene Correlated wave functions: Bragbook



Dynamic Many-Body Theory (DMBT)

(Multi-)particle fluctuations for bosons

Build on the success story for the ground state:
Make the correlations time dependent !

; 1 1
|(D(t)> € 0 N(t)Fe |¢0> )

|®o): model ground state, 5U(t): excitation operator, A/(t):
normalization.
Bosons:

Z(Su Yrit) + > ou@(r, it

i<j
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Dynamic Many-Body Theory (DMBT)

(Multi-)particle fluctuations for bosons and fermions

Build on the success story for the ground state:
Make the correlations time dependent !

i 1
d(t)) = e Eot/h_—__ Fe2‘SU ®o)

|®o): model ground state, §U(t): excitation operator, A/(t):

normalization.
Fermions:

1 2) i
ou(t) = sul(tafan + > oul?) . (Dabal aa,,
p.h p;h,p’;h!

Generalities - Setting the scene Dynamic Many-Body Theory



Dynamic Many-Body Theory (DMBT)

(Multi-)particle fluctuations for bosons and fermions
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i 1
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@ ou(® describes fluctuations of the short-ranged structure
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Dynamic Many-Body Theory (DMBT)

(Multi-)particle fluctuations for bosons and fermions

Build on the success story for the ground state:
Make the correlations time dependent !

i 1
d(t)) = e Eot/h_—__ Fe2‘SU ®o)

|®o): model ground state, §U(t): excitation operator, A/(t):

normalization.
Fermions:

1 2)
ou(t) = sul(tafan + > oul?) . (Dabal aa,,
p.h p;h,p’;h!

@ ou(® describes fluctuations of the short-ranged structure
@ The physical content of 5u(? is beyond mean field theory !
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Dynamic Many-Body Theory (DMBT)

What these amplitudes do for bosons
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Dynamic Many-Body Theory (DMBT)

What these amplitudes do for bosons
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Dynamic Many-Body Theory (DMBT)

What these amplitudes do for bosons

§888888888888885888

000000000 OOOOOOOO0O
00000000000 OOOOO0O0
B38333333338333333
00000000000 OOOOOO0O
wo-Tavn  ORSERGSRSeRe
: OOOOOOOOOOOOOOOOOO
Y 0000000000000
+2_ 090 + clesetelellieetaeicicielele
1< OOOOOOOOOOOOOOOOOO
Q0000000000 OQ0O

889985455585558455

OOOOOOOOOOOOOOOOOO
OOOOOOOOOOOOOOOO

§35853555535558555

000000000 OOOOOOOOO

namic Many-Body Theory



Dynamic Many-Body Theory (DMBT)

What these amplitudes do for bosons
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Bosons: “He in 3D

Confronting Theory and Experiment: Experiments by Godfrin group in Grenoble

Experiments

One-body fluctuations:
Feynman(RPA) spectrum

(t) _ Zei(k~ri—wt)

hw(k) = h?k?/2mS (k)

20 |
S15 hw(k)=ck as k—0
[}
ol [/t
w .t

05 S(kw)

p=0.022 (A9
0.0 L L
0.0 0.5 1.0 fE5) 2.0 25
Kk (A

v
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Confronting Theory and Experiment: Experiments by Godfrin group in Grenoble

-body fluctuations:

ol fi=ri+ > nr)r

.l i#
-
E | Pl
~10
w [

05 S(kw)

0=0.022(A9)
00 L e
0.0 0.5 1.0 iy 2.0 25
K (A

.
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Bosons: “He in 3D

Confronting Theory and Experiment: Experiments by Godfrin group in Grenoble

. Many-body fluctuations:

sut) = > su(r;t)

+ > U@ (r, )+

i<j

Stationarity principle

0
5/dt<¢(t)(H +OH() ~ ih S o)) =0
w0-5: z S(kw)
Ny p=0.022 (A9
0.0

0.0 0.5 1.0 iy 2.0 25

k (A
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Bosons: “He in 3D

Confronting Theory and Experiment: Experiments by Godfrin group in Grenoble

. Many-body fluctuations:

sut) = > su(r;t)

+ > U@ (r, )+

i<j

Stationarity principle

0
5/dt<¢(t)(H +OH() ~ ih S o)) =0
EO: @ Brillouin-Wigner perturbation
Yl A Stk theory in the basis {e' 2iK"i|w)}.
/ p=0.022 (A9
0.0

0.0 0.5 1.0 iy 2.0 25

k (A

The Helium Liquids Confronting Theory and Experiment




Dynamic Many—Body Theory
A few equations

® Dynamic Structure Function
1 3, aiker) /
S(k,w) = ——Jm dzre"™ "V x(r,r; w).

@ Density—density response function

_S(k) S(k)
x(k,w) = —— Y(kw)  —w-x(k,-w)’

@ Self-energy

1/d3pd3q 5(k —p —a)|Va(k; p,q)|?
2 ) (2n)%p w—X(p,w—e0(q)) — X(q,w — £o(p))

@ 3-phonon vertex Vz(k; p,q)

(K, w) = eo(K)+

The Helium Liquids Dynamic Many—Body Theory



Dynamic Many—Body Theory

A few diagrams

The Helium Liquids Dynamic Many—Body Theory



The physical mechanisms

What is a roton ?

@ Isit

Quantum Statstical Mechanics in the Natural Sciences
Studies in the Natural Sciences Volume 4, 1974, pp 359-402

The Ghost of a Vanished Vortex Ring

Russall J. Donnelly

Abstract
Onsager's suggestion that a roton Is a vortex ring of molacular size Is discussed, and a review of
experimental evidence together with theories based on this idea are presented.

The physical mechanisms t is a roton ?



The physical mechanisms

What is a roton ?

@ Isit

Quantum Statstical Mechanics in the Natural Sciences
Studies in the Natural Sciences Volume 4, 1974, pp 359-402

The Ghost of a Vanished Vortex Ring

Russall J. Donnelly

Abstract

Onsager's suggestion that a roton Is a vortex fing of molecular size Is discussed, and a review of
experimental evidence together with theories based on this idea are presented.

@ Or
Is the Roton in Superfluid *He the Ghost
of a Bragg Spot?*

P. Noziéres

Laboratoire d’Etude des Propriétés Electroniques des Solides,
Centre National de la Recherche Scientifique,
B.P166, 38042 Grenoble Cedex 9, France
E-mail: nozieres@ill.fr
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The physical mechanisms

What is a roton ?

@ Isit

Quantum Statstical Mechanics in the Natural Sciences
Studies in the Natural Sciences Volume 4, 1974, pp 359-402

The Ghost of a Vanished Vortex Ring

Russall J. Donnelly

Abstract

Onsager's suggestion that a roton Is a vortex fing of molecular size Is discussed, and a review of
experimental evidence together with theories based on this idea are presented.

@ Or
Is the Roton in Superfluid *He the Ghost
of a Bragg Spot?*

P. Noziéres

Laboratoire d’Etude des Propriétés Electroniques des Solides,
Centre National de la Recherche Scientifique,
B.P166, 38042 Grenoble Cedex 9, France
E-mail: nozieres@ill.fr

@ If so, could there be a second Bragg peak ?

None found in 3D *He
The physical mechanisms What is a roton ?



4He in 2D

Theoretical predictions — An experimental challenge

@ Below saturation (p =0.044 A-2)
strong anomalous dispersion;

12 - 110

10 A

108

8l
- {106 3
E- 6 - £
£ & Feynman------ loa 2

4r CBF

oL 0=0.044 K? EOM —— 102

Arrigoni et al. =
0 . . . | . . 0.0
00 05 10 15 20 25 30 35

KA
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Theoretical predictions — An experimental challenge

@ Below saturation (p =0.044 A-2)
strong anomalous dispersion;

@ Roton paramaters within error 1 o
bars of Monte Carlo calculations; |
108
ol
% . {06 E
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Theoretical predictions — An experimental challenge

@ Below saturation (p =0.044 A-2)
strong anomalous dispersion;

@ Roton paramaters within error 12

1 1.0
bars of Monte Carlo calculations; |

g 108
@ Around saturation, not much new; &} fi o
2 ® /  Feynman------ 104 §

4+ CBF '
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4He in 2D

Theoretical predictions — An experimental challenge

@ Below saturation (p =0.044 A-2)
strong anomalous dispersion;

@ Roton paramaters within error 12
bars of Monte Carlo calculations; |

@ Around saturation, not much new; s |

B ‘:\ =
N
1 “-“M I
13 ﬁ ii :\ 1 b
Tl h
T
e
i
\t 1/ Feynman------
1 CBF
0=0.064 A2 EOM

Arrigoni et al. —-=—
. . .

@ Close to the liquid-solid phase z°
transition, a weak, secondary
“roton” !
0
0.0

. . .
05 10 15 20 25 30 3.

KIA™Y
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4He in 2D

Theoretical predictions — An experimental challenge

@ Below saturation (p =0.044 A-2)
strong anomalous dispersion;

@ Roton paramaters within error
bars of Monte Carlo calculations;

@ Around saturation, not much new;

@ Close to the liquid-solid phase
transition, a weak, secondary

“roton” !

@ Monte Carlo calculations
dynamically inconsistent

The physical mechanisms

hw[K]
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10 -

B ‘:\ =
N
1 “-“M I
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T
e
i
\t 1/ Feynman------
1 CBF
0=0.064 A2 EOM

Arrigoni et al. —-=—
. . .

0.0
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4He in 2D

Theoretical predictions — An experimental challenge

@ Below saturation (p =0.044 A-2)
strong anomalous dispersion;

@ Roton paramaters within error PR "
bars of Monte Carlo calculations; | f’/ﬁ"l" Ti .
. RN 10
@ Around saturation, not much new; 8 /gl o
X L & _LI I . [
@ Close to the liquid-solid phase RN {1/ Feynman——- | o | §
. I CBF ’
transition, a weak, secondary [ E——— - |
"rOton" I Arrigoni et al. —-=—
0 : : : : : : 0.0
@ Monte Carlo calculations p0 08 10 18 fo 28 %0 %

dynamically inconsistent

@ Still a challenge for neutron
scatterer !

The physical mechanisms Experimental challenge: 4He in 2D



Consequence of roton energy
What does this tell us ?

@ Sum rules

/dw%mx(k,w) = S(k)

20 f
S
dwwSmy(k,w) = — $*°
2m E. |/ Lermee
=10} .- ..
w LI et
05 S(kw)
p=0022(A")
0.0 L L

0.0 0.5 1.0 15 2.0 25
k (A

The physical mechanisms Consequence of roton energy



Consequence of roton energy
What does this tell us ?

@ Sum rules

/dw%mx(k,w) = S(k)

20
h?k? I
/dww%mx(k,w) = — g
2m élo | EEREE .
w " e
@ If we assume only one sl s(kio)
phonon, we get Feynman (off o pmo02A
by a factor of 2) 00 05 10 15 20 25

k (A
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Consequence of roton energy
What does this tell us ?

@ Sum rules

/dw%mx(k,w) = S(k)

20 |
k2 sl
dwwSmy(k,w) = — $*°
2m E. |/ e
CLor .. " .

@ If we assume only one o5l S(ke)
phonon, we get Feynman (off o pmo02A
by a factor of 2) 00 05 10 15 20 25

k (A

@ Need a multi(quasi-)particle
continuum to get the
energetics right !
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The physical mechanisms:
Mode-mode couplings

Experiments The "Pitaevskii plateau”

> A perturbation with momentum q and

energy w can decay into two rotons

ay’ and g with [a%)| = 4| = da

under momentum and energy and
ervation w = 2A.

@ Tha roton momenta may be
aligned

— 1 _ la] < 2dr

2 3
q (A
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The physical mechanisms:

Mode-mode couplings

Experiments The "Pitaevskii plateau”

A perturbation with momentum q and
energy w can decay into two rotons

1 2 2
al’) and %) with [qf| = |a| = da
under momentum and energy and
conservation w = 2A.

The roton momenta may be

I S(kew)
0=0.022(A3)
ol proemen

0.0 05 1.0 15 2.0 25
k (A
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The physical mechanisms:

Mode-mode couplings

The "ghost phonon”

Phonon dispersion relation

w(q) = cq(L +9°)
@ “normal dispersion™ v < 0
= phonons are stable

J @ “anomalous dispersion” v > 0

- Phonons can decay

= “He at zero pressure is borderline
S

between normal and anomalous,
~v=0.1
(k)
p=0.022(A3)

= Perturbations with momentum (q,

w) can decay into two phonons with

P (9/2, w/2) as long as the dispersion
relation is almost linear up to q/2.

0.0 0.5 1.0

15
Kk (A
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The physical mechanisms:
Mode-mode couplings

Maxon-roton coupling

s b e

2l

A similar but less sharply defined
< process
Theory
2.0
= 15 -
e -
o // \/
o5t 7 S(kw)
/ p=0.022(A3)
0.0 L L L
0.0 0.5 1.0 15 2.0 25
Kk (AY
v
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Summary

What we know today

@ Quantitative agreement between experiments in 3D;
@ Prediction of a secondary roton—like mode in 2D “He;
@ Prediction of maxon damping at high pressure “He

@ Structures are more pronounced in 2D;

® 1 — 2 and 2 — 1 processes are not the end of the story but do not
lead to sharp features.

o

Summary
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